Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Vasiliy Brusko, ${ }^{\text {a }}$ Volker Böhmer ${ }^{\text {a }}$

 and Michael Bolte ${ }^{\text {b }}$ *${ }^{\mathrm{a}}$ Fachbereich Chemie, Pharmazie und Geowissenschaften, Abteilung Lehramt Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55099 Mainz, Germany, and ${ }^{\mathbf{b}}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.050$
$w R$ factor $=0.148$
Data-to-parameter ratio $=18.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrapentoxycalix[4]arene

The molecule of the title compound, $\mathrm{C}_{64} \mathrm{H}_{96} \mathrm{O}_{4}$, adopts the typical pinched-cone conformation. The dihedral angles between the reference plane (defined by the C atoms of the methylene bridges) and the benzene rings are 86.88 (4), 136.64 (5), 87.22 (4) and 133.99 (4) ${ }^{\circ}$.

Comment

A perspective view of the title compound, (I), is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 1.6 plus three updates; MOGUL, Version 1.0; Allen, 2002). The molecule adopts the typical pinched-cone conformation. The reference plane of the calixarene, defined as the mean plane of the bridging C atoms (here $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ and C 4) is almost perfectly planar (r.m.s. deviation $=0.0817 \AA$); rings C11-C16 and C31C36 subtend angles of 86.88 (4) and 87.22 (4) $)^{\circ}$, respectively, with this plane, whereas rings C21-C26 and C41-C46 enclose angles of 136.64 (5) and $133.99(4)^{\circ}$, respectively, with this plane. Thus, the former rings are slightly bent inwards, whereas the others are clearly bent outwards. Rings C11-C16 and C31-C36 are almost coplanar [0.40(11) ${ }^{\circ}$, whereas the other two are almost perpendicular to each other [89.37(5) ${ }^{\circ}$]. The torsion angles describing the orientation of the aromatic rings with respect to the reference plane are listed in Table 1. Two pentoxy chains adopt all-trans conformations, whereas in the remaining two chains gauche torsion angles are found.

(I)

Experimental

The title tetrapentyl ether, (I), was prepared by O-alkylation of tertbutylcalix[4]arene with pentyl bromide under standard conditions (Jakobi et al., 1996). Crystals were obtained from a chloroform solution.

Received 17 November 2005 Accepted 18 November 2005 Online 26 November 2005

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{64} \mathrm{H}_{96} \mathrm{O}_{4} \\
& M_{r}=929.41 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=15.8573(8) \AA \\
& b=20.0393(13) \AA \\
& c=20.0147(10) \AA \\
& \beta=110.436(4)^{\circ} \\
& V=5959.8(6) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.036 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 77341 reflections
$\theta=2.0-25.8^{\circ}$
$\mu=0.06 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.46 \times 0.42 \times 0.24 \mathrm{~mm}$

Data collection

Stoe IPDS-II two-circle diffractometer
ω scans
Absorption correction: none 84719 measured reflections 11556 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.148$
$S=1.04$
11556 reflections
632 parameters

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

C43-C1-C11-C12	$114.88(16)$	C23-C3-C31-C32	$118.52(16)$
C12-C13-C2-C21	$-115.35(16)$	C32-C33-C $4-\mathrm{C} 41$	$-118.75(16)$
$\mathrm{C} 13-\mathrm{C} 2-\mathrm{C} 21-\mathrm{C} 22$	$75.08(19)$	$\mathrm{C} 33-\mathrm{C} 4-\mathrm{C} 41-\mathrm{C} 42$	$76.96(19)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 3-\mathrm{C} 31$	$-72.3(2)$	$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 43-\mathrm{C} 42$	$-76.37(18)$

H atoms were located in a difference electron-density map, but refined with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=\right.$ $1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ methyl C$)$] using a riding model, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.95 to $0.99 \AA$. Two C atoms of one pentoxy chain are disordered over two sites, with occupation factors of 0.520 (6) and 0.480 (6). The bonds involving the disordered atoms were refined with a distance restraint of 1.54 (1) A.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in

Figure 1
A perspective view of the title compound, with the atom numbering; displacement ellipsoids are drawn at the 30% probability level. Only one component of the disordered pentoxy chain is shown; $\mathrm{C12}^{\prime}, \mathrm{C12}^{\prime \prime}$ and H atoms have been omitted for clarity.

SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Jakobi, R. A., Böhmer, V., Grüttner, C., Kraft, D. \& Vogt, W. (1996). New J. Chem. 20, 493-501.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2005 International Union of Crystallography

